Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 396
Filtrar
1.
J Bone Miner Res ; 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38624186

RESUMO

BACKGROUND: The relationship between socio-economic status and bone-related diseases is attracting increasing attention. Therefore, a bidirectional Mendelian randomization (MR) analysis was performed in this study. METHODS: Genetic data on factors associated with socio-economic status (average total household income before tax, years of schooling completed and Townsend Deprivation Index at recruitment), femoral neck bone mineral density (FN-BMD), heel bone mineral density (eBMD), osteoporosis, and five different sites of fracture (spine, femur, lower leg-ankle, foot, and wrist-hand fractures) were derived from genome-wide association summary statistics of European ancestry. The inverse variance weighted method was employed to obtain the causal estimates, complemented by alternative MR techniques, including MR-Egger, weighted median, and MR-pleiotropy residual sum and outlier (MR-PRESSO). Furthermore, sensitivity analyses, and multivariable MR was performed to enhance the robustness of our findings. RESULTS: A higher educational attainment was associated with an increased level of eBMD (beta:0.06, 95% CI:0.01-0.10, P = 7.24 × 10-3), and decreased risk of osteoporosis (OR:0.78, 95% CI:0.65-0.94, P = 8.49 × 10-3), spine fracture (OR:0.76, 95% CI:0.66-0.88, P = 2.94 × 10-4), femur fracture (OR:0.78, 95% CI:0.67-0.91, P = 1.33 × 10-3), lower leg-ankle fracture (OR:0.79, 95% CI:0.70-0.88, P = 2.05 × 10-5), foot fracture (OR:0.78, 95% CI:0.66-0.93, P = 5.92 × 10-3) and wrist-hand fracture (OR:0.83, 95% CI:0.73-0.95, P = 7.15 × 10-3). Further, material deprivation seemed to harm the spine fracture (OR:2.63, 95% CI:1.43-4.85, P = 1.91 × 10-3). A higher level of FN-BMD positively affected increased household income (beta:0.03, 95% CI:0.01-0.04, P = 6.78 × 10-3). All these estimates were adjusted for body mass index (BMI), type 2 diabetes, smoking initiation, and frequency of alcohol intake. CONCLUSIONS: The Mendelian randomization analyses show that higher educational levels is associated with higher eBMD, reduced risk of osteoporosis and fractures, while material deprivation is positively related to spine fracture. Enhanced FN-BMD correlates with increased household income. These findings offer valuable insights into the formulation of health guidelines and policy development.


We conducted stratified analyses to explore the causal links between socio-economic status and osteoporosis and various fractures and observed that education significantly reduced risk of osteoporosis and lower eBMD. It also lowered the risks of fractures of spine, femur, lower leg-ankle, foot, and wrist-hand, while material deprivation exhibited positive associations with spine fracture risk. Bidirectional MR analysis showed that an elevated score of FN-BMD was associated with a higher income level. Our study shows the importance of conducting routine BMD estimations and osteoporosis screening, to enhance knowledge and awareness among individuals to promote bone health and prevent fractures.

2.
PLoS One ; 19(4): e0301823, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38578766

RESUMO

BACKGROUND: According to epidemiological studies, particulate matter 2.5 (PM2.5) is a significant contributor to cardiovascular disease (CVD). However, making causal inferences is difficult due to the methodological constraints of observational studies. In this study, we used two-sample Mendelian randomization (MR) to examine the causal relationship between PM 2.5 and the risk of CVD. METHODS: Genome-wide association study (GWAS) statistics for PM2.5 and CVD were collected from the FinnGen and UK Biobanks. Mendelian randomization analyses were applied to explore the causal effects of PM2.5 on CVD by selecting single-nucleotide polymorphisms(SNP) as instrumental variables. RESULTS: The results revealed that a causal effect was observed between PM2.5 and coronary artery disease(IVW: OR 2.06, 95% CI 1.35, 3.14), and hypertension(IVW: OR 1.07, 95% CI 1.03, 1.12). On the contrary, no causal effect was observed between PM2.5 and myocardial infarction(IVW: OR 0.73, 95% CI 0.44, 1.22), heart failure(IVW: OR 1.54, 95% CI 0.96, 2.47), atrial fibrillation(IVW: OR 1.03, 95% CI 0.71, 1.48), and ischemic stroke (IS)(IVW: OR 0.98, 95% CI 0.54, 1.77). CONCLUSION: We discovered that there is a causal link between PM2.5 and coronary artery disease and hypertension in the European population, using MR methods. Our discovery may have the significance of public hygiene to improve the understanding of air quality and CVD risk.


Assuntos
Doenças Cardiovasculares , Doença da Artéria Coronariana , Hipertensão , Humanos , Doenças Cardiovasculares/etiologia , Doenças Cardiovasculares/genética , Doença da Artéria Coronariana/etiologia , Doença da Artéria Coronariana/genética , Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Material Particulado/efeitos adversos
3.
Nat Commun ; 15(1): 3085, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600128

RESUMO

Constructing an artificial solid electrolyte interphase (SEI) on lithium metal electrodes is a promising approach to address the rampant growth of dangerous lithium morphologies (dendritic and dead Li0) and low Coulombic efficiency that plague development of lithium metal batteries, but how Li+ transport behavior in the SEI is coupled with mechanical properties remains unknown. We demonstrate here a facile and scalable solution-processed approach to form a Li3N-rich SEI with a phase-pure crystalline structure that minimizes the diffusion energy barrier of Li+ across the SEI. Compared with a polycrystalline Li3N SEI obtained from conventional practice, the phase-pure/single crystalline Li3N-rich SEI constitutes an interphase of high mechanical strength and low Li+ diffusion barrier. We elucidate the correlation among Li+ transference number, diffusion behavior, concentration gradient, and the stability of the lithium metal electrode by integrating phase field simulations with experiments. We demonstrate improved reversibility and charge/discharge cycling behaviors for both symmetric cells and full lithium-metal batteries constructed with this Li3N-rich SEI. These studies may cast new insight into the design and engineering of an ideal artificial SEI for stable and high-performance lithium metal batteries.

4.
Artigo em Inglês | MEDLINE | ID: mdl-38628818

RESUMO

Purpose: Results from studies of extended capecitabine after the standard adjuvant chemotherapy in early stage triple-negative breast cancer (TNBC) were inconsistent, and only low-dose capecitabine from the SYSUCC-001 trial improved disease-free survival (DFS). Adjustment of the conventional adjuvant chemotherapy doses affect the prognosis and may affect the efficacy of subsequent treatments. This study investigated whether the survival benefit of the SYSUCC-001 trial was affected by dose adjustment of the standard adjuvant chemotherapy or not. Patients and Methods: We reviewed the adjuvant chemotherapy regimens before the extended capecitabine in the SYSUCC-001 trial. Patients were classified into "consistent" (standard acceptable dose) and "inconsistent" (doses lower than acceptable dose) dose based on the minimum acceptable dose range in the landmark clinical trials. Cox proportional hazards model was used to investigate the impact of dose on the survival outcomes. Results: All 434 patients in SYSUCC-001 trial were enrolled in this study. Most of patients administered the anthracycline-taxane regimen accounted for 88.94%. Among patients in the "inconsistent" dose, 60.8% and 47% received lower doses of anthracycline and taxane separately. In the observation group, the "inconsistent" dose of anthracycline and taxane did not affect DFS compared with the "consistent" dose. Moreover, in the capecitabine group, the "inconsistent" anthracycline dose did not affect DFS compared with the "consistent" dose. However, patients with "consistent" taxane doses benefited significantly from extended capecitabine (P=0.014). The sufficient dose of adjuvant taxane had a positive effect of extended capecitabine (hazard ratio [HR] 2.04; 95% confidence interval [CI] 1.02 to 4.06). Conclusion: This study found the dose reduction of adjuvant taxane might negatively impact the efficacy of capecitabine. Therefore, the reduction of anthracycline dose over paclitaxel should be given priority during conventional adjuvant chemotherapy, if patients need dose reduction and plan for extended capecitabine.

5.
Diabetes Metab Syndr Obes ; 17: 1511-1521, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38586542

RESUMO

Alcoholic fatty liver disease (FALD) and non-alcoholic fatty liver disease (NAFLD) have similar pathological spectra, both of which are associated with a series of symptoms, including steatosis, inflammation, and fibrosis. These clinical manifestations are caused by hepatic lipid synthesis and metabolism dysregulation and affect human health. Despite having been studied extensively, targeted therapies remain elusive. The Cytochrome P450 (CYP450) family is the most important drug-metabolising enzyme in the body, primarily in the liver. It is responsible for the metabolism of endogenous and exogenous compounds, completing biological transformation. This process is relevant to the occurrence and development of AFLD and NAFLD. In this review, the correlation between CYP450 and liver lipid metabolic diseases is summarised, providing new insights for the treatment of AFLD and NAFLD.

6.
Artigo em Inglês | MEDLINE | ID: mdl-38528388

RESUMO

The conventional therapeutic treatment of triple-negative breast cancer (TNBC) is negatively influenced by the development of tumor cell drug resistant, and systemic toxicity of therapeutic agents due to off-target activity. In accordance with research findings, nanoparticles (NPs) responsive to the tumor microenvironment (TME) have been discovered for providing opportunities to selectively target tumor cells via active targeting or Enhanced Permeability and Retention (EPR) effect. The combination of the TME control and therapeutic NPs offers promising solutions for improving the prognosis of the TNBC because the TME actively participates in tumor growth, metastasis, and drug resistance. The NP-based systems leverage stimulus-responsive mechanisms, such as low pH value, hypoxic, excessive secretion enzyme, concentration of glutathione (GSH)/reactive oxygen species (ROS), and high concentration of Adenosine triphosphate (ATP) to combat TNBC progression. Concurrently, NP-based stimulus-responsive introduces a novel approach for drug dosage design, administration, and modification of the pharmacokinetics of conventional chemotherapy and immunotherapy drugs. This review provides a comprehensive examination of the strengths, limitations, applications, perspectives, and future expectations of both novel and traditional stimulus-responsive NP-based drug delivery systems for improving outcomes in the medical practice of TNBC. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.


Assuntos
Antineoplásicos , Nanopartículas , Neoplasias de Mama Triplo Negativas , Humanos , Antineoplásicos/uso terapêutico , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia , Sistemas de Liberação de Fármacos por Nanopartículas , Sistemas de Liberação de Medicamentos , Nanomedicina , Microambiente Tumoral , Nanopartículas/uso terapêutico
7.
J Dairy Sci ; 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38554824

RESUMO

Ultra-instantaneous UHT (UI-UHT, > 155°C, < 0.1 s) treated milk exhibits higher retention of active protein than regular UHT milk. However, UI-UHT products demonstrate increased susceptibility to destabilization during storage. This study aimed at monitoring the destabilizing process of UI-UHT milk across different storage temperatures and uncovering its potential mechanisms. Compared with regular UHT treatment, ultra-instantaneous treatment markedly accelerated the milk's destabilization process. Aged gel formation occurred after 45 d of storage at 25°C, while creaming and sedimentation were observed after 15 d at 37°C. To elucidate the instability mechanism, measurements of plasmin activity, protein hydrolysis levels, and proteomics of the aged gel were conducted. In UI-UHT milk, plasmin activity, and protein hydrolysis levels significantly increased during storage. Excessive protein hydrolysis at 37°C resulted in sedimentation, while moderate hydrolysis and an increase in protein particle size at 25°C resulted in aged gel formation. Proteomics analysis results indicated that the aged gel from UI-UHT milk contained intact caseins, major whey proteins, and their derived peptides. Furthermore, specific whey proteins including albumin, lactotransferrin, enterotoxin-binding glycoprotein PP20K, and MFGM proteins were identified in the gel. Additionally, MFGM proteins in UI-UHT milk experienced considerable hydrolysis during storage, contributing to fat instability. This study lays a theoretical foundation for optimizing UI-UHT milk storage conditions to enhance the quality of liquid milk products.

8.
ACS Appl Mater Interfaces ; 16(10): 12353-12362, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38436097

RESUMO

Rechargeable garnet-based solid-state Li batteries hold immense promise as nonflammable, nontoxic, and high energy density energy storage systems, employing Li7La3Zr2O12 (LLZO) with a garnet-type structure as the solid-state electrolyte. Despite substantial progress in this field, the advancement and eventual commercialization of garnet-based solid-state Li batteries are impeded by void formation at the LLZO/Li interface at practical current densities and areal capacities beyond 1 mA cm-2 and 1 mAh cm-2, respectively, resulting in limited cycling stability and the emergence of Li dendrites. Additionally, developing a fabrication approach for thin LLZO electrolytes to achieve high energy density remains paramount. To address these critical challenges, herein, we present a facile methodology for fabricating self-standing, 50 µm thick, porous LLZO membranes with a small pore size of ca. 2.3 µm and an average porosity of 51%, resulting in a specific surface area of 1.3 µm-1, the highest reported to date. The use of such LLZO membranes significantly increases the Li/LLZO contact area, effectively mitigating void formation. This methodology combines two key elements: (i) the use of small pore formers of ca. 1.5 µm and (ii) the use of ultrafast sintering, which circumvents ceramics overdensification using rapid heating/cooling rates of ca. 50 °C per second. The fabricated porous LLZO membranes demonstrate exceptional cycling stability in a symmetrical Li/LLZO/Li cell configuration, exceeding 600 h of continuous operation at a current density of 0.1 mA cm-2.

9.
Eur Respir J ; 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38514093

RESUMO

RATIONALE: Respiratory virus-induced inflammation is the leading cause of asthma exacerbation, frequently accompanied by induction of IFN-stimulated genes (ISGs). How asthma genetic susceptible genes modulate cellular response upon viral infection through fine-tuning ISGs induction and subsequent airway inflammation in genetically susceptible asthmatics remains largely unknown. OBJECTIVES: To decipher the functions of GSDMB in respiratory virus-induced lung inflammation. METHODS: In two independent cohorts, we analyzed expression correlation between GSDMB and ISGs. In human bronchial epithelial cell line or primary cells, we generated GSDMB-overexpressing and -deficient cells. A series of qPCR, ELISA and co-immunoprecipitation assays were performed to determine the function and mechanism of GSDMB for ISGs induction. We also generated a novel transgenic mouse line with inducible expression of human unique GSDMB gene in airway epithelial cells and applied respiratory syncytial virus (RSV) infection to determine the role of GSDMB on RSV-induced lung inflammation in vivo. MEASUREMENTS AND MAIN RESULTS: Gasdermin B encoded by GSDMB, one of the most significant asthma-susceptible genes at 17q21, acts as a novel RNA sensor, promoting MAVS-TBK1 signaling and subsequent inflammation. In airway epithelium, GSDMB is induced by respiratory viral infections. Expression of GSDMB and ISGs significantly correlated in respiratory epithelium from two independent asthma cohorts. Notably, inducible expression of human GSDMB gene in mouse airway epithelium leads to enhanced ISGs induction, increased airway inflammation with mucus hyper-secretion upon RSV infection. CONCLUSIONS: GSDMB promotes ISGs expression and airway inflammation upon respiratory virus infection, thereby conferring asthma risk in risk allele carriers.

10.
bioRxiv ; 2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38293222

RESUMO

Lupus nephritis (LN) is a frequent manifestation of systemic lupus erythematosus, and fewer than half of patients achieve complete renal response with standard immunosuppressants. Identifying non-invasive, blood-based pathologic immune alterations associated with renal injury could aid therapeutic decisions. Here, we used mass cytometry immunophenotyping of peripheral blood mononuclear cells in 145 patients with biopsy-proven LN and 40 healthy controls to evaluate the heterogeneity of immune activation in patients with LN and to identify correlates of renal parameters and treatment response. Unbiased analysis identified 3 immunologically distinct groups of patients with LN that were associated with different patterns of histopathology, renal cell infiltrates, urine proteomic profiles, and treatment response at one year. Patients with enriched circulating granzyme B+ T cells at baseline showed more severe disease and increased numbers of activated CD8 T cells in the kidney, yet they had the highest likelihood of treatment response. A second group characterized primarily by a high type I interferon signature had a lower likelihood of response to therapy, while a third group appeared immunologically inactive by immunophenotyping at enrollment but with chronic renal injuries. Main immune profiles could be distilled down to 5 simple cytometric parameters that recapitulate several of the associations, highlighting the potential for blood immune profiling to translate to clinically useful non-invasive metrics to assess immune-mediated disease in LN.

11.
Fish Shellfish Immunol ; 144: 109267, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38043875

RESUMO

Streptococcosis is a highly contagious aquatic bacterial disease that poses a significant threat to tilapia. Vaccination is a well-known effective measure to prevent and control fish bacterial diseases. Among the various immunization methods, immersion vaccination is simple and can be widely used in aquaculture. Besides, nanocarrier delivery technology has been reported as an effective solution to improve the immune effect of immersion vaccine. In this study, the surface immunogenic protein (Sip) was proved to be conserved and potential to provide cross-immunoprotection for both Streptococcus agalactiae (S. agalactiae) and Streptococcus iniae (S. iniae) by multiple sequences alignment and Western blotting analysis. On this basis, we expressed and obtained the recombinant protein rSip and connected it with functionalized carbon nanotubes (CNT) to construct the nanocarrier vaccine system CNT-rSip. After immersion immunization, the immune effect of CNT-rSip against above two streptococcus infections was evaluated in tilapia based on some aspects including the serum specific antibody level, non-specific enzyme activities, immune-related genes expression and relative percent survival (RPS) after bacteria challenge. The results showed that compared with control group, CNT-rSip significantly (P < 0.05) increased the serum antibody levels, related enzyme activities including acid phosphatase, alkaline phosphatase, lysozyme and total antioxidant capacity activities, as well as the expression levels of immune-related genes from 2 to 4 weeks post immunization (wpi), and all these indexes peaked at 3 wpi. Besides, the above indexes of CNT-rSip were higher than those of rSip group with different extend during the experiment. Furthermore, the challenge test indicated that CNT-rSip provided cross-immunoprotection against S. agalactiae and S. iniae infection with RPS of 75 % and 72.41 %, respectively, which were much higher than those of other groups. Our study indicated that the nanocarrier immersion vaccine CNT-rSip could significantly improve the antibody titer and confer cross-immuneprotection against S. agalactiae and S. iniae infection in tilapia.


Assuntos
Vacinas Bacterianas , Doenças dos Peixes , Nanotubos de Carbono , Infecções Estreptocócicas , Tilápia , Animais , Doenças dos Peixes/microbiologia , Doenças dos Peixes/prevenção & controle , Imersão , Infecções Estreptocócicas/prevenção & controle , Infecções Estreptocócicas/veterinária , Streptococcus agalactiae , Streptococcus iniae
12.
Prenat Diagn ; 44(2): 247-250, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37596871

RESUMO

Heterozygous loss-of-function variants in the PKD1 gene are commonly associated with adult-onset autosomal dominant polycystic kidney disease (ADPKD), where the formation of renal cysts depends on the dosage of the PKD1 gene. Biallelic null PKD1 variants are not viable, but biallelic hypomorphic variants could lead to early-onset PKD. We report a non-consanguineous Chinese family with recurrent fetal polycystic kidney and negative findings in the coding region of the PKHD1 gene or chromosomal microarray analysis. Trio exome analysis revealed compound heterozygous variants of uncertain significance in the PKD1 gene in the index pregnancy: a novel paternally inherited c.7863 + 5G > C and a maternally inherited c.9739C > T, p.(Arg3247Cys). Segregation analysis through long-range PCR followed by nested PCR and Sanger sequencing confirmed another affected fetus had both variants, while the other two normal siblings and the parents carried either variant. Thus, these two variants, both of which were hypomorphic as opposed to null variants, co-segregated with prenatal onset polycystic kidney disease in this family. Functional studies are needed to further determine the impact of these two variants. Our findings highlight the biallelic inheritance of hypomorphic PKD1 variants causing prenatal onset polycystic kidney disease, which provides a better understanding of phenotype-genotype correlation and valuable information for reproductive counseling.


Assuntos
Rim Policístico Autossômico Dominante , Canais de Cátion TRPP , Adulto , Feminino , Gravidez , Humanos , Canais de Cátion TRPP/genética , Rim Policístico Autossômico Dominante/diagnóstico , Rim Policístico Autossômico Dominante/genética , Diagnóstico Pré-Natal , Estudos de Associação Genética , Exoma , Mutação
13.
Bone ; 178: 116926, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37793499

RESUMO

The periosteum plays a crucial role in bone healing and is an important source of skeletal stem and progenitor cells. Recent studies in mice indicate that diverse populations of skeletal progenitors contribute to growth, homeostasis and healing. Information about the in vivo identity and diversity of skeletal stem and progenitor cells in different compartments of the adult human skeleton is limited. In this study, we compared non-hematopoietic populations in matched tissues from the femoral head and neck of 21 human participants using spectral flow cytometry of freshly isolated cells. High-dimensional clustering analysis indicated significant differences in marker distribution between periosteum, articular cartilage, endosteum and bone marrow populations, and identified populations that were highly enriched or unique to specific tissues. Periosteum-enriched markers included CD90 and CD34. Articular cartilage, which has very poor regenerative potential, showed enrichment of multiple markers, including the PDPN+CD73+CD164+CD146- population previously reported to represent human skeletal stem cells. We further characterized periosteal populations by combining CD90 with other strongly expressed markers. CD90+CD34+ cells sorted directly from periosteum showed significant colony-forming unit fibroblasts (CFU-F) enrichment, rapid expansion, and consistent multi-lineage differentiation of clonal populations in vitro. In situ, CD90+CD34+ cells include a perivascular population in the outer layer of the periosteum and non-perivascular cells closer to the bone surface. CD90+ cells are also highly enriched for CFU-F in bone marrow and endosteum, but not articular cartilage. In conclusion, our study indicates considerable diversity in the non-hematopoietic cell populations in different tissue compartments within the adult human skeleton, and suggests that periosteal progenitor cells reside within the CD90+CD34+ population.


Assuntos
Moléculas de Adesão Celular , Células-Tronco , Humanos , Adulto , Camundongos , Animais , Diferenciação Celular , Antígenos CD34 , Biomarcadores , Periósteo
14.
Prenat Diagn ; 44(2): 251-254, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38141042

RESUMO

We report a fetus with prenatal ultrasound at 21 gestational weeks showing left cystic renal dysplasia with subcapsular cysts and echogenic parenchyma, right echogenic kidney with absent corticomedullary differentiation, and left congenital diaphragmatic hernia (CDH) with bowel herniation, with intestinal atresia (IA) found on postmortem examination. Whole genome sequencing of fetal blood DNA revealed a heterozygous pathogenic variant c.344 + 2 T>G in the HNF1B gene (NM_000458). Sanger sequencing of the parental samples suggested that it arose de novo in the fetus. HNF1B-associated disorders affect multiple organs with significant phenotypic heterogeneity. In pediatric and adult patients, renal cystic disease and cystic dysplasia are the dominant phenotypes. In prenatal settings, renal anomaly is also the most common presentation, typically with bilateral hyperechogenic kidneys. Our case presented with two uncommon extra-renal phenotypes of CDH and IA besides the typical bilateral cystic renal dysplasia. This association has been reported in fetuses with 17q12 microdeletion but not with HNF1B point mutation. Our case is the first prenatal report of such an association and highlights the possible causal relationship of HNF1B defects with CDH and IA in addition to the typical renal anomalies.


Assuntos
Hérnias Diafragmáticas Congênitas , Nefropatias , Adulto , Feminino , Humanos , Gravidez , Feto/diagnóstico por imagem , Fator 1-beta Nuclear de Hepatócito/genética , Rim/diagnóstico por imagem , Nefropatias/diagnóstico por imagem , Nefropatias/genética , Fenótipo
15.
Prog Neurobiol ; 232: 102561, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38142769

RESUMO

Chronic craniofacial pain is intractable and its mechanisms remain unclarified. The rostral ventromedial medulla (RVM) plays a crucial role in descending pain facilitation and inhibition. It is unclear how the descending circuits from the RVM to spinal trigeminal nucleus (Sp5) are organized to bidirectionally modulate craniofacial nociception. We used viral tracing, in vivo optogenetics, calcium signaling recording, and chemogenetic manipulations to investigate the structure and function of RVM-Sp5 circuits. We found that most RVM neurons projecting to Sp5 were GABAergic or glutamatergic and facilitated or inhibited craniofacial nociception, respectively. Both GABAergic interneurons and glutamatergic projection neurons in Sp5 received RVM inputs: the former were antinociceptive, whereas the latter were pronociceptive. Furthermore, we demonstrated activation of both GABAergic and glutamatergic Sp5 neurons receiving RVM inputs in inflammation- or dysfunction-induced masseter hyperalgesia. Activating GABAergic Sp5 neurons or inhibiting glutamatergic Sp5 neurons that receive RVM projections reversed masseter hyperalgesia. Our study identifies specific cell types and projections of RVM-Sp5 circuits involved in facilitating or inhibiting craniofacial nociception respectively. Selective manipulation of RVM-Sp5 circuits can be used as potential treatment strategy to relieve chronic craniofacial muscle pain.


Assuntos
Hiperalgesia , Núcleo Espinal do Trigêmeo , Humanos , Hiperalgesia/metabolismo , Núcleo Espinal do Trigêmeo/metabolismo , Dor , Bulbo/metabolismo , Neurônios GABAérgicos/metabolismo
16.
Cancer Innov ; 2(1): 79-90, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38090374

RESUMO

The number of clinical trials conducted in mainland China, including investigator-initiated trials (IITs), has increased rapidly in recent years. However, there are few data on the characteristics of cancer-related IITs. We performed a comprehensive analysis of the landscape of cancer-related IITs in mainland China in the past decade. All cancer-related IITs registered on two clinical trial registries in the United States (www.clinicaltrials.gov, CT.gov) and mainland China (www.chictr.org.cn, ChiCTR) from 2010 to 2019 were identified. IITs were reviewed manually to validate classification, subcategorized by cancer type, and stratified by design characteristics to facilitate comparison across cancer types and with other specialties. A total of 8199 cancer-related IITs were identified. The number of trials registered annually increased over time, especially in the last 5 years. Although interventional studies were predominant, randomized double-blind studies accounted for only 8% of IITs. In the past decade, the trend for interventional studies conducted with different drugs increased year on year, although the increase in hormonal therapy IITs was not significant. Additionally, cancer-related IITs were unevenly geographically distributed, with half concentrated in the economically developed cities Shanghai, Beijing, and Guangdong. We also found an increase in registration before participant enrollment (64.9% for trials in conducted in 2015-2019 vs. 40.2% in 2010-2014, p < 0.001) and data monitoring committee use (44.5% vs. 40.0%, p = 0.001) and a decrease in randomization (51.5% vs. 62.7%, p < 0.001) and funding (36.4% vs. 56.3%, p < 0.001) between these periods. We also observed changes in intervention type (decrease in cytotoxic drug therapy [34.8% vs. 48.9%, p < 0.001]; increase in targeted therapy [17.8% vs. 14.2%, p = 0.004], immune checkpoint inhibitor therapy [6.6% vs. 0.0%, p < 0.001], and immune cell therapy [9.6% vs. 4.5%, p < 0.001]). Details of cancer-related IITs conducted during the past decade illustrate the merits of oncology research in mainland China. Although the increased quantity of IITs is encouraging, limitations remain regarding the quality of clinical trials, regional imbalances, and funding allocation.

17.
ACS Appl Mater Interfaces ; 15(51): 59329-59336, 2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38091363

RESUMO

Metallic zinc (Zn) has been considered one of the most promising anode materials for next-generation aqueous Zn batteries due to its low redox potential and high storage capacity. However, excessive dendrite formation in Zn metal, corrosion, the evolution of hydrogen gas during the cycling process, and the poor Zn-ion (Zn2+) transport from the electrolyte to the electrode limit its practical application. One of the most effective strategies to suppress Zn dendrite growth and promote Zn2+ transport is to introduce suitable protective layers between the Zn metal electrode and the electrolyte. Herein, we mathematically simulated the dynamic interactions between the Zn deposition on the anode and the resulting displacement of a protective layer that covers the anode, the latter of which can simultaneously inhibit Zn dendrite growth and enhance the Zn2+ transport through the interface between the Zn anode and the protective layer. Our simulation results indicate that a protective layer of high Zn2+ diffusivity not only improves the deposition rate of the Zn metal but also prevents dendrite growth by homogenizing the Zn2+ concentration at the anode surface. In addition, it is revealed that the anisotropic Zn2+ diffusivity in the protective layer influences the 2D diffusion of Zn2+. Higher Zn2+ diffusivity perpendicular to the Zn metal surface inhibits dendrite growth, while higher diffusivity parallel to the Zn metal surface promotes dendrite growth. Our work thus provides a fundamental understanding and a design principle for controlling anisotropic Zn2+ diffusion in the protective layer for better suppression of dendrite growth in Zn metal batteries.

18.
Nat Commun ; 14(1): 7168, 2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37935672

RESUMO

Van der Waals (vdW) ferroelectrics have attracted significant attention for their potential in next-generation nano-electronics. Two-dimensional (2D) group-IV monochalcogenides have emerged as a promising candidate due to their strong room temperature in-plane polarization down to a monolayer limit. However, their polarization is strongly coupled with the lattice strain and stacking orders, which impact their electronic properties. Here, we utilize four-dimensional scanning transmission electron microscopy (4D-STEM) to simultaneously probe the in-plane strain and out-of-plane stacking in vdW SnSe. Specifically, we observe large lattice strain up to 4% with a gradient across ~50 nm to compensate lattice mismatch at domain walls, mitigating defects initiation. Additionally, we discover the unusual ferroelectric-to-antiferroelectric domain walls stabilized by vdW force and may lead to anisotropic nonlinear optical responses. Our findings provide a comprehensive understanding of in-plane and out-of-plane structures affecting domain properties in vdW SnSe, laying the foundation for domain wall engineering in vdW ferroelectrics.

19.
Front Cell Dev Biol ; 11: 1209320, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38020907

RESUMO

Background: Currently, the mechanism(s) underlying corticogenesis is still under characterization. Methods: We curated the most comprehensive single-cell RNA-seq (scRNA-seq) datasets from mouse and human fetal cortexes for data analysis and confirmed the findings with co-immunostaining experiments. Results: By analyzing the developmental trajectories with scRNA-seq datasets in mice, we identified a specific developmental sub-path contributed by a cell-population expressing both deep- and upper-layer neurons (DLNs and ULNs) specific markers, which occurred on E13.5 but was absent in adults. In this cell-population, the percentages of cells expressing DLN and ULN markers decreased and increased, respectively, during the development suggesting direct neuronal transition (namely D-T-U). Whilst genes significantly highly/uniquely expressed in D-T-U cell population were significantly enriched in PTN/MDK signaling pathways related to cell migration. Both findings were further confirmed by co-immunostaining with DLNs, ULNs and D-T-U specific markers across different timepoints. Furthermore, six genes (co-expressed with D-T-U specific markers in mice) showing a potential opposite temporal expression between human and mouse during fetal cortical development were associated with neuronal migration and cognitive functions. In adult prefrontal cortexes (PFC), D-T-U specific genes were expressed in neurons from different layers between humans and mice. Conclusion: Our study characterizes a specific cell population D-T-U showing direct DLNs to ULNs neuronal transition and migration during fetal cortical development in mice. It is potentially associated with the difference of cortical development in humans and mice.

20.
Biomater Sci ; 11(23): 7655-7662, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37850341

RESUMO

Thromboembolism, arising from the utilization of cardiovascular medical devices, remains a prevalent issue entailing substantial morbidity and mortality. Despite the proposal of various surface modification strategies, each approach possesses inherent limitations and drawbacks. Herein, we propose a novel approach for the in situ growth of nanocoatings on various material surfaces through the cooperative assembly of silk fibroin (SF) and lysozyme. The intrinsic in situ growth characteristic enables the nanocoatings to achieve stable and uniform adherence to diverse substrate surfaces, including the inner surface of intravascular catheters, to redefine the surface properties of the material. The features of the hydrophilic and negatively charged nanocoating contribute to its antithrombotic properties, as evidenced by the reduced likelihood of platelet adhesion upon modification of the ultrathin and mechanically robust coating. In vitro assessment confirms a significant reduction in blood clot formation along with the promotion of anticoagulation. Such a SF/Ly nanocoating holds substantial promise as a surface modification strategy to enhance the hemocompatibility of medical devices and other materials that come into contact with blood, particularly in situations where medical-grade materials are temporarily unavailable, thus providing a feasible alternative.


Assuntos
Tromboembolia , Trombose , Humanos , Materiais Revestidos Biocompatíveis/química , Adesividade Plaquetária , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...